丁香园 | 丁香通 | 人才 | 会议 | 药学 | 博客  
 点击次数:

小鼠胚胎干细胞向多种类型组织的分化

转载请注明来自丁香园
发布日期:2012-06-16 13:52 文章来源:丁香园
分享到: 收藏夹 新浪微博 腾讯微博 开心网 豆瓣社区 人人网
关键词: 胚胎干细胞 生物专题 丁香园 丁香通 百通生物   点击次数:


前言

小鼠胚胎干细胞(embryonic stem cells, ES细胞)是一种永久未分化细胞系,它由早期胚胎获得,具有多向分化潜能。ES细胞具有两个重要的特性:自我更新能力,可以形成新的多潜能ES细胞;可以向成体小鼠所有特定的组织细胞类型分化。在十九世纪80年代和90年代,有关研究集中于ES转基因研究,克隆嵌合或基因敲除小鼠,以研究哺乳动物体内基因产物的功能。最近,控制胚胎干细胞体外分化的研究进展为揭示胚胎发育和组织特异性分化的机制,以及制备具有治疗作用的细胞,提供了有益的信息。

小鼠ES细胞的特性和体外培养

ES细胞来源于小鼠胚胎发育第3.5天时囊胚(植入子宫前)的内细胞团。将囊胚接种到放射处理过的胚胎成纤维细胞饲养层上,外层的细胞贴壁生长,而内细胞团中的未分化细胞自主积聚成团,取出传代培养后即可建立ES细胞系1,2。 ES细胞具有多能性,体外培养时可无限地保留其未分化状态,接种于囊胚后可形成包括生殖细胞在内的所有组织细胞3。 将ES细胞与辐射过的小鼠胚胎成纤维细胞共培养,或接种于明胶铺板的培养皿上,体系中加入白血病抑制因子(leukemia inhibitory factor, LIF),即可维持ES细胞体外培养4。

除LIF外,人们已经发现了一些与ES自我更新有关的内源性或外源性调节分子(请参考相关综述)5。骨形成蛋白-4(bone morphogenetic protein-4, BMP-4)在ES体外培养时可以替代血清,抑制ES细胞向神经细胞的分化6。 另外,由于ES细胞在分化过程中Wnt信号下调,Wnt蛋白也可能具有维持ES细胞多向分化特性的作用7,8。

在胚胎发育早期,转录因子Oct4 (Oct-3、Oct3/4、Pou5f1 ) 在细胞发育调节中意义重要。它在内细胞团中表达,而在向滋养层分化中其表达下降9。培养体系中去除LIF诱导ES细胞分化,Oct4表达水平随之降低5。另外一种含同源盒结构的蛋白Nanog,也在桑椹胚和囊胚阶段的内细胞层及早期生殖细胞中表达,胚胎植入前其表达下调。Nanog过表达可维系ES细胞的自我更新能力,无需LIF/gp130/stat3信号通路的活化10,11。 其它具有维系ES细胞“干性”的因子尚有Sox2和FoxD35。 当然,适宜的培养条件和试剂的质量对维持细胞的特性也是十分必要的12。

小鼠ES体外分化为类胚体

撤除LIF或基质层后,体外培养的ES自主分化为复杂的、具有三维结构的细胞团,称为类胚体(embroid bodies, EBs)。与体内的胚胎形成过程相似,EBs内细胞分化也遵循严格的时相规律,早期形成三个胚层(即外胚层、中胚层和内胚层),然后细胞进行终末分化,这与体内的胚胎发育类似12,13。 在自发分化过程中,虽然能形成多种细胞类型,但是细胞并不均一,也不能观察到某些类型的细胞,如内胚层源细胞。

ES体外分化为不同类型的组织细胞

目前,人们已经建立了小鼠ES细胞分化后富集并扩增某一细胞类型的方法(请参阅表1)。其中一种富集的方法称为基因筛选,在特定启动子的控制下,通过表达决定ES分化方向的基因(如定向造血有关的HOXB4转录因子)或抗药性标记15-17以获得相对均一的成熟细胞群体。例如,Marchetti等将血管内皮特异性启动子Tie-1与耐抗生素基因连接,转染ES细胞,用来获取纯化的内皮细胞。这些细胞可进行选择性扩增,移植裸鼠后可整合到新生血管中15。

借助FACS,根据细胞特有的表面标志可进行细胞分选。Yamashita等曾报道利用该方法分离来源于ES细胞的Flk-1+造血祖细胞,它们能在体内外分化为血管的内皮细胞和壁细胞18。可见,细胞富集可促进祖细胞的鉴定,为血管发育中细胞的来源提供新的见解。

此外,选择性培养基和培养条件在特定细胞群筛选中也得到广泛应用,并且神经细胞的富集已经仪器化19-21。 Brustle等利用该方法获得了一群表达胶质前体细胞标志的多能祖细胞。具体操作是,将ES细胞培养于适合神经细胞生存的体系中,之后顺序加入FGF-2、FGF-2和EGF、FGF-2和PDGF等多种细胞因子组合,结果产生可传数代的细胞。生长因子撤除后,这些细胞或分化为寡突细胞或星形胶质细胞21。 特定的细胞因子组合也可用于促进其他成熟细胞的增殖,包括肥大细胞22、 造血细胞23 和树突状细胞24。 利用GM-CSF和IL-3组合,可从分化中的ES细胞建立稳定的树突状细胞长期培养24。某些化学诱导剂,如维生素A衍生物维甲酸在体外可促进ES细胞向神经细胞的分化25,26。

体外诱导ES细胞向内胚层分化,尤其向胰岛素分泌细胞分化,在实际操作中相当困难。Soria等将人胰岛素启动子与抗生素耐药基因连接,通过药物筛选获得胰岛素分泌细胞16。有趣的是,以巢素(nestin,神经细胞的标记分子)启动子构建的载体转染ES细胞,诱导分化后药物筛选应该获得神经细胞,但也可以得到含类似胰岛结构的组织27。但是,这种方法的可重复性仍不确定28, 需要进一步实验来证实巢素靶向选择能否真正形成胰岛细胞。此外,Blyszczuk小组报告了一种胰岛素分泌细胞多步骤诱导法,无须进行细胞筛选或巢素阳性细胞诱导29。

Ali等最近报道了ES细胞分化为另一种内胚层细胞的技术,ES细胞体外诱导后可以分化为II型肺泡上皮细胞;这种细胞与肺气体交换有关30。这些初步结果为利用分化的ES细胞修复肺损伤,提供了有实用前途的模型。

血管新生(angiogenesis)是原有血管通过发芽、分裂和再塑形成新血管的过程,其重要性涉及很多研究领域,如实体瘤的生长与转移、创伤愈合、炎症相关疾病和心肌梗塞等。Feraud等已经建立了以ES为基础的血管新生体系:他们将未分化的ES细胞接种于含血管形成因子的半固体培养基中,三天后从类胚体的中心向外伸展多个血管样结构,提示存在血管新生现象31。

将ES细胞与不同是基质细胞系共培养,也可促进细胞向组织特异性方向分化。例如:OP9基质细胞系支持ES向B和NK细胞分化32-35。OP9细胞系从op/op小鼠颅骨细胞建系,细胞存在M-CSF基因突变。由于M-CSF促进巨噬细胞增殖,抑制ES细胞向淋巴细胞体外分化,因此,不难理解为什么OP9支持这种定向分化了32。另外一种细胞系,Pa6,具有神经诱导活性(基质细胞源诱导活性,SDIA),与ES细胞共培养后促进神经细胞生成,30%细胞为可移植且分泌多巴胺的神经元36。

ES及ES分化的细胞移植后的功能研究

ES及ES分化的细胞移植后,可以在宿主组织中生存、整合,并且可以检测到移植细胞的功能。Bjorklund等将少量分散的第4天类胚体移植到帕金森氏病模型大鼠,移植的细胞可以分化为产生多巴胺的神经元(DA神经元),并能逆转部分疾病症状37。然而,虽然56%的受试动物存在含有DA神经元的移植物,另有20%的动物却有致死性的畸胎瘤37。此外,移植的ES细胞可在体内环境作用下,在成年动物形成新的肝细胞38。

在ES应用于临床前,必须建立有效的手段以防止ES细胞在受者体内形成畸胎瘤。应用ES细胞业已定向终末分化的细胞(而非ES细胞自身),能减少畸胎瘤的发生率。Yin等39利用基因打靶技术,将绿色荧光蛋白基因(GFP基因)整合到未分化ES细胞的甲胎蛋白(一种胎肝特异性蛋白)位点。体外诱导ES细胞向肝脏细胞分化后,FACS收集GFP阳性细胞,注射给结合珠蛋白基因缺陷的小鼠。结果在小鼠体内可以检测到低水平的结合珠蛋白,提示分化的ES细胞植入体内后可发挥正常作用。更为重要的是,在超过百只的受试小鼠中,没有一例发生畸胎瘤39。其他研究者应用ES分化的寡突细胞21,26,40 和DA神经元36,41 移植,也没有发现畸胎瘤。转录因子核受体相关因子-1(Nurr1)能促进中脑前体细胞向DA神经元分化,McKay等将Nurr1基因转染ES细胞,在生长因子作用下,ES细胞更倾向于神经元分化。将分化的细胞植入小鼠脑组织内,细胞可在体内存活并在8周内发挥其生理功能。植入的细胞也没有形成畸胎瘤41。当然,业已分化的ES细胞能否在体内成瘤,仍需长时间的观察予以明确。

ES细胞具有植入性,但是,植入细胞的功能在受体内能维持多长时间,也是一个重要的问题。有研究表明,小鼠接受ES源胰岛素分泌细胞移植后,大部分受试小鼠12周后出现高血糖,提示植入的细胞在体内存活时间有限16。有趣的是,Kyba将HOXB4(一种与造血干细胞自我更新有关的转录因子)在ES细胞中过表达,然后将ES细胞与OP9基质细胞共培养,诱导细胞向造血干细胞分化。这些细胞移植到受致死量辐射小鼠后可实现长期和多向的造血,二次移植也能使造血重建。结果说明,这些细胞能长期保持其造血功能14。这项研究提示,ES源的组织干细胞比终末分化的细胞更适于移植。

总之,ES细胞体外分化为多种细胞类型的研究已取得重大进展,为研究系列分化和胚胎形成过程中的分子和细胞学机制,提供了良好的模型。如能更确切地了解体细胞干/祖细胞基因或表面标志,必将提高ES分化细胞在再生医学中应用的效率和安全性。

表1.  小鼠ES细胞体外分化细胞类型



ES细胞重现体内胚胎发育过程,在体外分化为三个胚层的细胞,进而形成成年小鼠体内绝大多数细胞类型。

注:加拿大StemCell 技术公司和杭州百通生物技术有限公司联合推出胚胎干祖细胞培养及促分化系列产品详情请向杭州百通生物技术有限公司垂询,或登陆网站:http://www.stemcell.com或:http://www.biowish.com

参考文献:

1. Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156, 1981

2. Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634-7638, 1981

3. Bradley A, Evans M, Kaufman MH, Robertson E: Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255-256, 1984

4. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM: Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336: 684-687, 1988

5. Chambers I, Smith A: Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23: 7150-60, 2004

6. Ying QL, Nichols J, Chambers I, Smith A: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281-92, 2003

7. Feng Z, Srivastava AS, Mishra R, Carrier E: A regulatory role of Wnt signaling pathway in the hematopoietic differentiation of murine embryonic stem cells. Biochem Biophys Res Commun 324:1333-9, 2004

8. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10: 55-63, 2004

9. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-91, 1998

10. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631-42, 2003

11. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-55, 2003

12. Rathjen J, Rathjen PD: Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr Opin Genet Dev 11: 587-594, 2000

13. Weiss MJ, Orkin SH: In vitrodifferentiation of mouse embryonic stem cells. New approaches to old problems. J Clin Invest 97: 591-595, 1996

14. Kyba M, Perlingeiro RC, Daley GQ: HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29-37, 2002

15. Marchetti S, Gimond C, Iljin K, Bourcier C, Alitalo K, Pouyssegur J, Pages G: Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci 115: 2075-2085, 2002

16. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F: Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49: 157-162, 2000

17. Klug MG, Soonpaa MH, Koh GY, Field LJ: Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98: 216-224, 1996

18. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K: Flk1- positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408: 92-96, 2000

19. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD: Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59: 89-102, 1996

20. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD: Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18: 675-679, 2000

21. Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD: Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285: 754-756, 1999

22. Tsai M, Wedemeyer J, Ganiatsas S, Tam SY, Zon LI, Galli SJ: In vivoimmunological function of mast cells derived from embryonic stem cells: an approach for the rapid analysis of even embryonic lethal mutations in adult mice in vivo. Proc Natl Acad Sci USA 97: 9186-9190, 2000

23. Wiles MV, Keller G: Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111: 259-267, 1991

24. Fairchild PJ, Brook FA, Gardner RL, Graca L, Strong V, Tone Y, Tone M, Nolan KF, Waldmann H: Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr Biol 10: 1515- 1518, 2000

25. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI: Embryonic stem cells express neuronal properties in vitro. Dev Biol 168: 342-357, 1995 26. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5: 1410-1412, 1999

27. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292: 1389-1394, 2001

28. Selander L, Edlund H: Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech Dev 113: 189-192, 2002

29. Blyszczuk P, Asbrand C, Rozzo A, Kania G, St-Onge L, Rupnik M, Wobus AM: Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 48:1095-104, 2004

30. Ali NN, Edgar AJ, Samadikuchaksaraei A, Timson CM, Romanska HM, Polak JM, Bishop AE: Derivation of Type II alveolar epithelial cells from mouse embryonic stem cells. Tissue Eng 8: 541-550, 2002

31. Feraud O, Cao Y, Vittet D: Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis. Lab Invest 81:1669-81, 2001

32. Nakano T, Kodama H, Honjo T: Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265: 1098-1101, 1994

33. Nakayama N, Fang I, Elliott G: Natural killer and B-lymphoid potential in CD34+ cells derived from embryonic stem cells differentiated in the presence of vascular endothelial growth factor. Blood 91: 2283-2295, 1998

34. Lian RH, Maeda M, Lohwasser S, Delcommenne M, Nakano T, Vance RE, Raulet DH, Takei F: Orderly and nonstochastic acquisition of CD94/NKG2 receptors by developing NK cells derived from embryonic stem cells in vitro. J Immunol168: 4980-4987, 2002

35. Cho SK, Webber TD, Carlyle JR, Nakano T, Lewis SM, Zuniga-Pflucker JC: Functional characterization of B lymphocytes generated in vitrofrom embryonic stem cells. Proc Natl Acad Sci USA, 96: 9797-9802, 1999

36. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y: Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31-40, 2000

37. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99: 2344-2349, 2002

38. Choi D, Oh HJ, Chang UJ, Koo SK, Jiang JX, Hwang SY, Lee JD, Yeoh GC, Shin HS, Lee JS, Oh B: In vivodifferentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant 11: 359-368, 2002

39. Yin Y, Lim YK, Salto-Tellez M, Ng SC, Lin CS, Lim SK: AFP(+), ESC-derived cells engraft and differentiate into hepatocytes in vivo. Stem Cells 20: 338-346, 2002

40. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW: Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97: 6126-6131, 2000

41. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418: 50-56,

2002

42. Wichterle H, Lieberam I, Porter J, Jessell T: Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385, 2002

43. Billon N, Jolicoeur C, Ying QL, Smith A, Raff M: Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J Cell Sci 115: 3657-3665, 2002

44. Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J: In vitrodifferentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108: 3181-3188, 1995

45. Bagutti C, Wobus AM, Fassler R, Watt FM: Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells. Dev Biol: 179: 184-196, 1996

46. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G: Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110: 1279-1285, 1997

47. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM: Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189-201, 2002

48. Wobus AM, Wallukat G, Hescheler J: Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48: 173-182, 1991

49. Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Ji G, Fleischmann B, Katus HA, Hescheler J, Franz WM: Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29: 1525-1539, 1997

50. Maltsev VA, Rohwedel J, Hescheler J, Wobus AM: Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44: 41-50, 1993

51. Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J: Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 92: 193-205, 2000

52. Carotta S, Pilat S, Mairhofer A, Schmidt U, Dolznig H, Steinlein P, Beug H: Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 104:1873-80, 2004

53. Nakano T, Kodama H, Honjo T: In vitrodevelopment of primitive and definitive erythrocytes from different precursors. Science 272: 722-724, 1996

54. Keller G, Kennedy M, Papayannopoulou T, Wiles MV: Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13: 473-486, 1993

55. Gutierrez-Ramos JC, Palacios R: In vitrodifferentiation of embryonic stem cells into lymphocyte precursors able to generate T and B lymphocytes in vivo. Proc Natl Acad Sci USA 89: 9171- 9175, 1992

56. Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, Episkopou V, Polak JM: Differentiation of osteoblasts and in vitrobone formation from mosue embryonic stem cells. Tissue Eng 7: 89-99, 2001

57. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM: Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164: 87-101, 1994

58. Lindmark H, Rosengren B, Hurt-Camejo E, Bruder CE: Gene expression profiling shows that macrophages derived from mouse embryonic stem cells is an improved in vitro model for studies of vascular disease. Exp Cell Res 300:335-44, 2004

59. Jones EA, Tosh D, Wilson DI, Lindsay S, Forrester LM: Hepatic differentiation of mouse embryonic stem cells. Exp Cell Res 272: 15-22, 2002
 

编辑: gaowei2010

以下网友留言只代表网友个人观点,不代表网站观点