丁香园 | 丁香通 | 人才 | 会议 | 药学 | 博客  
 点击次数:

你知道吗 详细 >>

真核重组让研究更有价值

● 真核细胞本身的蛋白,尽量用真核表达,真核的表达环境使蛋白更有可能形成正确的结构,具备糖基化等修饰,更可能具有天然功能。而目前生命科学研究中,研究的模式生物大都为真核生物。


● 在真核细胞表达真核细胞的蛋白,折叠、修饰等方面更接近于天然蛋白,一般内毒素更低。这样试验过程才更接近真实的细胞活动。


● 如果你的运气足够好,发现你的实验结果可以为药物开发提供线索。恭喜你!如果你的实验是用真核表达的重组蛋白完成的,药企肯定会更感兴趣,因为这样的药物候选分子商业化风险更小。

点击量上万的细胞培养资料

转载请注明来自丁香园
发布日期:2012-02-16 16:51 文章来源:丁香园
分享到: 收藏夹 新浪微博 腾讯微博 开心网 豆瓣社区 人人网
关键词: 丁香园 生物专题 义翘神州 细胞培养   点击次数:

五、抗凋亡策略在细胞大规模培养中的应用

生物反应器动物细胞大规模生产过程中,细胞凋亡在细胞死亡中占主要部分。最近研究显示在大规模培养生物反应器中细胞的死亡中80%是凋亡所导致,而不是以前所认为的坏死。而在大规模细胞培养中,细胞死亡是维持细胞高活性和高密度的最大障碍。理论上讲,防止或延长细胞死亡,可以极大提高生物反应器生产重组蛋白的产量。

细胞凋亡由一系列基因精确地调控,是多细胞生物发育和维持稳态所必需的生理现象。已知凋亡的最终执行者是Caspase家族,它们均为半胱氨酸蛋白酶,各识别一个4氨基酸序列,并在识别序列C端天冬氨酸残基处将底物切断。Caspase含有可被自身识别的序列,可以切割活化自身而导致信号放大,并作用于下游Caspase成员,从而形成Caspase家族的级联放大,最终作用于效应蛋白,引起细胞凋亡。

所以在大规模培养时干扰细胞在培养中凋亡的发生,提高细胞特异性抵制遇到压力而引起凋亡的能力,有利于提高细胞的培养密度、延长细胞的培养周期,从而提高目标产品的产量2-3倍。

1、营养物质抗凋亡

在常规生物反应器构造中,营养耗竭或缺乏培养基中特殊的生长因子则引起凋亡,例如血清,糖或特殊氨基酸的耗尽。培养基中添加氨基酸或其它关键营养可抑制凋亡、延长培养时间从而提高产品的生产。大规模培养中细胞凋亡主要由于营养物质的耗竭或代谢产物的堆积引起,如谷氨酰胺的耗竭是最常见的凋亡原因,而且凋亡一旦发生,补加谷氨酰胺已不能逆转凋亡。另外,动物细胞在无血清、无蛋白培养基中进行培养时,细胞变得更为脆弱,更容易发生凋亡。

2、基因抗凋亡

与凋亡相关的一系列基因产物可对其进行正、负向的调控,因此可通过导入相应基因来调节细胞凋亡的机制。Bcl-2基因是目前最为有效的抗凋亡基因,在多种细胞系中均表现出很强的抗凋亡活性。

3、化学方法抗凋亡

凋亡发生时细胞许多部位发生生化物质的改变,有些变化如改变细胞氧化还原条件产生活性氧在凋亡信号阶段发生,其它的如破坏线粒体膜电位、激活caspase则发生在凋亡效应阶段,这在绝大多数细胞死亡中是相同的。因此,阻止这些生化物质的改变可能阻止或至少延迟细胞凋亡的发生,运用化学物质可抑制信号效应阶段的发生,被认为是抗调亡策略之一。

第三节 大规模培养技术的操作方式

深层培养可分为:分批式、流加式、半连续式、连续式、连续式和灌注式五种。

一、分批式培养(batch culture) 是细胞规模培养发展进程中较早期采用的方式,也是其它操作方式的基础。该方式采用机械搅拌式生物反应器,将细胞扩大培养后,一次性转入生物反应器内进行培养,在培养过程中其体积不变,不添加其它成分,待细胞增长和产物形成积累到适当的时间,一次性收获细胞、产物、培养基的操作方式。

该方式的特点:

操作简单。培养周期短,染菌和细胞突变的风险小。反应器系统属于封闭式,培养过程中与外部环境没有物料交换,除了控制温度、pH值和通气外,不进行其他任何控制,因此操作简单,容易掌握;

直观反映细胞生长代谢的过程。因培养期间细胞生长代谢是在一个相对固定的营养环境,不添加任何营养成分,因此可直观的反映细胞生长代谢的过程,是动物细胞工艺基础条件或"小试"研究常用的手段;

可直接放大。由于培养过程工艺简单,对设备和控制的要求较低,设备的通用性强,反应器参数的放大原理和过程控制,比较其它培养系统较易理解和掌握,在工业化生产中分批式培养操作是传统的、常用的方法,其工业反应器(Genetech)规模可达12000L。

分批培养过程中,细胞的生长分为五个阶段:延滞期、对数生长期、减速期、平稳期和衰退期,见图1。分批培养的周期时间多在3-5天,细胞生长动力学表现为细胞先经历对数生长期(48-72h)细胞密度达到最高值后,由于营养物质耗劫或代谢毒副产物的累积细胞生长进入衰退期进而死亡,表现出典型的生长周期。收获产物通常是在细胞快要死亡前或已经死亡后进行。

二、流加式培养(feeding culture)

1、流加式培养是在批式培养的基础上,采用机械搅拌式生物反应器系统,悬浮培养细胞或以悬浮微载体培养贴壁细胞,细胞初始接种的培养基体积一般为终体积的1/2~1/3,在培养过程中根据细胞对营养物质的不断消耗和需求,流加浓缩的营养物或培养基,从而使细胞持续生长至较高的密度,目标产品达到较高的水平,整个培养过程没有流出或回收,通常在细胞进入衰亡期或衰亡期后进行终止回收整个反应体系,分离细胞和细胞碎片,浓缩、纯化目标蛋白。

2、流加培养特点:

流加培养根据细胞生长速率、营养物消耗和代谢产物抑制情况,流加浓缩的营养培养基。流加的速率与消耗的速率相同,按底物浓度控制相应的流加过程,保证合理的培养环境与较低的代谢产物抑制水平。

培养过程以低稀释率流加,细胞在培养系统中停留时间较长,总细胞密度较高,产物浓度较高。

流加培养过程须掌握细胞生长动力学,能量代谢动力学,研究细胞环境变化时的瞬间行为。流加培养细胞培养基的设计和培养条件与环境优化,是整个培养工艺中的主要内容。

在工业化生产,悬浮流加培养工艺参数的放大原理和过程控制,比较其它培养系统较易理解和掌握,可采用工艺参数的直接放大。

流加培养是当前动物细胞培养中占有主流优势的培养工艺,也是近年来动物细胞大规模培养研究的热点。流加培养中的关键技术是基础培养基和流加浓缩的营养培养基。通常进行流加的时间多在指数生长后期,细胞在进入衰退期之前,添加高浓度的营养物质。可以添加一次,也可添加多次,为了追求更高的细胞密度往往需要添加一次以上,直至细胞密度不再提高;可进行脉冲式添加,也可以降低的速率缓慢进行添加,但为了尽可能的维持相对稳定的营养物质环境,后者采用较多;添加的成分比较多,凡是促细胞生长的物质均可以进行添加。流加的总体原则是维持细胞生长相对稳定的培养环境,营养成分即不过剩而产生大量的代谢副产物造成营养利用效率下降而成为无效的利用;也不缺乏导致细胞生长抑制或死亡。

3、流加工艺中的营养成分主要分为三大类:

葡萄糖:葡萄糖是细胞的供能物质和主要的碳源物质,然而当其浓度较高是会产生大量的代谢产物乳酸,因而需要进行其浓度控制,以足够维持细胞生长而不至于产生大量的副产物的浓度为佳。

谷氨酰胺:谷氨酰胺是细胞的供能物质和主要的氮源物质,然而当其浓度较高是会产生大量的代谢产物氨,因而也需要进行其浓度控制,以足够维持细胞生长而不至于产生大量的副产物的浓度为佳;

大规模培养中细胞凋亡主要由于营养物质的耗竭或代谢产物的堆积引起,如谷氨酰胺的耗竭是最常见的凋亡原因,而且凋亡一旦发生,补加谷氨酰胺已不能逆转凋亡。另外,动物细胞在无血清、无蛋白培养基中进行培养时,细胞变得更为脆弱,更容易发生凋亡。

氨基酸、维生素及其他:主要包括营养必需氨基酸、营养非必需氨基酸、一些特殊的氨基酸如羟脯氨酸、羧基谷氨酸和磷酸丝氨酸;此外还包括其他营养成分如胆碱、生长刺激因子。添加的氨基酸形式多为左旋氨基酸,因而多以盐或前体的形式替代单分子氨基酸,或者添加四肽或短肽的形式。在进行添加时,不溶性氨基酸如胱氨酸、酪氨酸和色氨酸只在中性pH值部分溶解,可采用泥浆的形式进行脉冲式添加;其他的可溶性氨基酸以溶液的形式用蠕动泵进行缓慢连续流加。

4、流加式培养分为两种类型:单一补料分批式培养和反复补料分批式培养。

单一补料分批式培养是在培养开始时投入一定量的基础培养液,培养到一定时期,开始连续补加浓缩营养物质,直到培养液体积达到生物反应器的最大操作容积,停止补加,最后将细胞培养液一次全部放出。该操作方式受到反应器操作容积的限制,培养周期只能控制在较短的时间内。

反复补料分批式培养是在单一补料分批式操作的基础上,每个一定时间按一定比例放出一部分培养液,是培养液体积始终不超过反应器的最大操作容积,从而在理论上可以延长培养周期,直至培养效率下降,才将培养液全部放出。

三、半连续式培养(semi-continuous culture)

1、半连续式培养又称为重复分批式培养或换液培养。采用机械搅拌式生物反应器系统,悬浮培养形式。在细胞增长和产物形成过程中,每间隔一段时间,从中取出部分培养物,再用新的培养液补足到原有体积,使反应器内的总体积不变。

这种类型的操作是将细胞接种一定体积的培养基,让其生长至一定的密度,在细胞生长至最大密度之前,用新鲜的培养基稀释培养物,每次稀释反应器培养体积的1/2~3/4,以维持细胞的指数生长状态,随着稀释率的增加培养体积逐步增加。或者在细胞增长和产物形成过程中,每隔一定时间,定期取出部分培养物,或是条件培养基,或是连同细胞、载体一起取出,然后补加细胞或载体,或是新鲜的培养基继续进行培养的一种操作模式。剩余的培养物可作为种子,继续培养,从而可维持反复培养,而无需反应器的清洗、消毒等一系列复杂的操作。在半连续式操作中由于细胞适应了生物反应器的培养环境和相当高的接种量,经过几次的稀释、换液培养过程,细胞密度常常会提高。

2、半连续式特点:

培养物的体积逐步增加;

可进行多次收获;

细胞可持续指数生长,并可保持产物和细胞在一较高的浓度水平,培养过程可延续到很长时间。

该操作方式的优点是操作简便,生产效率高,可长时期进行生产,反复收获产品,可使细胞密度和产品产量一直保持在较高的水平。在动物细胞培养和药品生产中被广泛应用。

四、连续式培养(continuous culture)

1、连续式培养是一种常见的悬浮培养模式,采用机械搅拌式生物反应器系统。该模式是将细胞接种与一定体积的培养基后,为了防止衰退期的出现,在细胞达最大密度之前,以一定速度向生物反应器连续添加新鲜培养基;同时,含有细胞的培养物以相同的速度连续从反应器流出,以保持培养体积的恒定。理论上讲,该过程可无限延续下去。

2、连续培养的优点是反应器的培养状态可以达到恒定,细胞在稳定状态下生长。稳定状态可有效的延长分批培养中的对数生长期。在稳定状态下细胞所处的环境条件如营养物质浓度、产物浓度、pH值可保持恒定,细胞浓度以及细胞比生长速率可维持不变。细胞很少受到培养环境变化带来的生理影响,特别是生物反应器的主要营养物质葡萄糖和谷氨酰胺,维持在一个较低的水平,从而使他们的利用效率提高,有害产物积累有所减少。然而在高的稀释率下,虽然死细胞和细胞碎片及时清除,细胞活性高最终细胞密度得到提高;可是产物却不断在稀释,因而产物浓度并为提高;尤其是细胞和产物不断的稀释,营养物质利用率、细胞增长速率和产物生产速率低下。

3、连续式培养不足:

由于是开放式操作,加上培养周期较长,容易造成污染;

在长周期的连续培养中,细胞的生长特性以及分泌产物容易变异;

对设备、仪器的控制技术要求较高。

连续式培养操作使用的反应器多数是搅拌式生物反应器,也可以是管式反应器。

编辑: cq

以下网友留言只代表网友个人观点,不代表网站观点