丁香园 | 丁香通 | 人才 | 会议 | 药学 | 博客  
 点击次数:

你知道吗 详细 >>

真核重组让研究更有价值

● 真核细胞本身的蛋白,尽量用真核表达,真核的表达环境使蛋白更有可能形成正确的结构,具备糖基化等修饰,更可能具有天然功能。而目前生命科学研究中,研究的模式生物大都为真核生物。


● 在真核细胞表达真核细胞的蛋白,折叠、修饰等方面更接近于天然蛋白,一般内毒素更低。这样试验过程才更接近真实的细胞活动。


● 如果你的运气足够好,发现你的实验结果可以为药物开发提供线索。恭喜你!如果你的实验是用真核表达的重组蛋白完成的,药企肯定会更感兴趣,因为这样的药物候选分子商业化风险更小。

培养基手册

转载请注明来自丁香园
发布日期:2012-02-17 14:05 文章来源:丁香园
分享到: 收藏夹 新浪微博 腾讯微博 开心网 豆瓣社区 人人网
关键词: 丁香园 生物专题 义翘神州 细胞培养 培养基   点击次数:

一、培养基的历史

体外培养(in vitro culture)包括:组织培养(tissue culture)、细胞培养(cell culture)、器官培养(organ culture)。顾名思义,就是将活体结构成分(如活体组织、活体细胞或者活体器官等)从体内或其寄生体内取出,放在类似于体内生存环境的体外环境中,让其生长发育的方法。广义组织培养与体外培养同义。

体外培养已经历了约一百年的发展历史,但发展初期进程比较缓慢,没有引起很多学者的重视。直到上世纪50年代后期,体外培养技术才广泛应用于生物学研究的各个领域,使这项技术得到飞速发展。现在体外培养已成为细胞工程、基因工程、抗体工程的重要组成部分。

细胞培养指从生物机体取出部分组织分散成单个细胞或直接从机体取出单个细胞,也可把体外培养细胞分散成单个细胞在体外条件下培养,细胞能继续存活与增殖。培养过程中细胞不再形成组织。

发展与完善细胞培养技术围绕防止污染、改进培养方法、设计新型培养容器、设计不同的培养液等几个方面进行。

1885年Roux温生理盐水培育鸡胚组织;

1903年Jolly,1906年Beebe等发明了盖片悬滴培养;

1907年Harrison培养蛙胚神经成功,开始创建盖片凹玻璃悬滴培养法;

1910、1912年Carrel采用无菌操作、更新培养基、传代,完善了悬滴培养法;

1924年Maximow采用双盖片悬滴培养法;

1923年Carral设计创立了卡氏瓶培养法,用此法可根据需要随时更换培养液,既有利于组织不断生长,又可以运用不同种类的营养液培养不同的细胞,极大地推动了当时组织培养研究。

Earle等加以改进,使大量细胞能直接生长于玻璃瓶壁上,培养了正常细胞与肿瘤细胞的细胞株。至此大多数研究人员都采用培养瓶培养细胞。

组织培养从二十世纪40年代起迅速发展,在培养容器、培养基和培养技术等方面出现了很多革新。

在培养容器方面, 由简单的用试管、旋转管培养,发展到多种培养瓶培养,近年来,塑料瓶、皿、多孔培养板的使用已日趋普遍。

在培养基方面,从50年代初,Parke、Eagle等设计出合成培养基后,从纯天然培养基到合成培养基、从鸡胚浸出液发展到动物血清(促细胞生长物),直至60年代设计出无血清培养基。

首先反映在设计不同种类的缓冲盐溶液,以用来培养不同的细胞和洗涤细胞。Earle在1948年设计了含有碳酸氢钠等盐类的Earle氏盐溶液,Hank’s在1949年设计了Hank’s氏盐溶液。

在培养技术方法方面,革新进展更为迅猛,Earle、Dulbecco等于1943年创建单层细胞培养法,首建长期传代的L-细胞系。

1948年Sanford创建单细胞分离培养法,获L-细胞纯系。

1951年Gey首建人肿瘤细胞——Hela细胞系。

1961年Hayflick首建人二倍体细胞系25种,开辟了应用新方向。

从50年代末开始,组织培养技术应用进入了一个繁盛的阶段,广泛应用于生物学和医学研究各个领域。

诱变建立遗传缺陷细胞株、杂交瘤技术制备单抗、发展细胞大量培养技术、利用重组技术构建工程细胞株,已成为生物工程的重要生产手段。

在连续灌注培养工艺方面,美国Ohashi,Ryo等人2001年报道采用2L一次性生物反应器灌注培养杂交瘤细胞生产单克隆抗体,以Becton Dickenson Cell Mab+10%胎牛血清+1%聚醚F-68为培养基,最高活细胞密度超过1×107cells/ml;2001年瑞士Heine, Holger等人用带超声细胞分离器(UCS)的连续灌注搅拌罐生物反应器培养鼠杂交瘤细胞生产单克隆抗体,稳态培养时活细胞密度超过2×107cells/ml;2004年德国Thomas等人在1L搅拌罐生物反应器中培养rCHO细胞生产人MUC-1糖蛋白,采取葡萄糖浓度限制的高产率灌注工艺减少有害代谢物,代谢转向TCA循环增加,活细胞密度保持在(1~2)×107cells/ml。

在流加悬浮培养工艺方面,美国麻省理工Xie Liangzhi等人2000年报道在2L生物反应器中流加培养杂交瘤细胞,通过营养控制降低氨和乳酸的比生成速率,补充培养基包括营养成分、胎牛血清和痕量金属,最大活细胞密度达到1.7×107cells/mL。

二、细胞培养目的与用途

1、科学研究

(1)药物研究开发,如新药筛选,疫苗、基因工程药物、细胞工程药物 

研究与开发、单克隆抗体制备等。

(2)基础研究,如药物作用机理、基因功能、疾病发生机理等研究。

2、生物制药

(1)疫苗生产:如病毒性疫苗(肝炎病毒疫苗、艾滋病疫苗等),多肽疫苗(肿瘤疫苗)等。

(2)基因工程药物生产:如EPO等。

(3)抗体药物、基因治疗药物生产。

(4)细胞工程药物生产:生物细胞内的一些生物活性多肽,生物活性物质等。

(5)利用细胞法体外测定生物活性物质的活性;并预测其在体内的药效和替代体内法检测其成品的生物活性。

三、细胞培养基的定义

人工模拟细胞体内生长的营养环境,维持细胞生长的营养物质,它是提供细胞营养和促进细胞生长增殖的物质基础。包括:

1、天然培养基

指来自动物体液或利用组织分离提取的一些培养基,如动物血浆、胚胎浸出液、血清和人血清,水解乳蛋白等。

2、合成培养基

人工设计、配制的培养基,如MEM、199、DMEM、RPMI1640等。

四、动物细胞培养技术平台

动物细胞大规模培养已成为生物制药领域最重要的关键技术之一,并以其研究的深入和进展推动生物技术产业的迅速发展。专家预言:蛋白治疗药物如糖蛋白、抗体和多肽药物仅仅只是刚刚开始进入市场,预计在下一个10年或20年会有更为快速的发展。届时,蛋白治疗药物的迅速增长和市场需求将远远超过全世界的生产能力。

动物细胞规模化生产重组蛋白和抗体的工艺选择可考虑使用当前较成熟的工业化支持技术平台,以缩短产品工艺研发的时间,加快工业化进程。当前已获FDA批准的生物技术产品以及公开发表的生产工艺中,占有主流优势的是搅拌式生物反应器悬浮培养,工艺设计是流加或灌注培养。其大规模细胞培养生产所面临的挑战是获得最大生产力的同时注重维持产品的质量;去除所有培养环境中外源因子的污染;更为精确有效的工艺控制手段;规模化培养中氧气的限定与溶解CO2浓度累积的控制等。

1996年1月至2002年12月美国获得成功批准的不同的治疗剂和诊断剂产品共31种,其中用哺乳动物细胞培养生产的就有21种。动物细胞培养技术已经成为一个受到普遍信任的产业化生产技术,并逐步形成商业化操作水平。

动物细胞大规模培养技术集中在细胞系、细胞培养基和细胞生物反应容器三个方面,构成生物制品生产的必要条件。

其中细胞是病毒、蛋白的表达载体,细胞质量直接影响蛋白的表达量或病毒的滴度,故筛选、驯化优质细胞是关键。而只有好的细胞培养基才可能筛选、驯化出优质的细胞。

细胞生物反应容器也在不断发展,以转瓶、反应器为主要细胞生产设备,配合高密度培养、微载体培养、悬浮培养技术,均需要相适应的细胞培养基以充分发挥作用,获得高表达、高产量,降低生产成本。

清大天一公司致力于动物细胞培养技术的开发和服务,跟随生物技术的发展,针对各种生物制品特点不断开发针对性培养基新产品,建立多种细胞体系的疫苗、抗体药物生产细胞培养技术平台,以提高相应细胞培养水平和生物制品表达水平,促进生物制药发展。

细胞培养技术对生物制品成本的影响

1、表达量提高

通过细胞培养技术的不断改进可以充分利用现有设备,大幅度提高生物制品表达量,降低生物制品的单位制造成本;同时,由于产量提高并不新增固定资产投资,也带来生物制品的单位固定成本的降低。

因此提高表达量可以有效降低生物制品的单位成本,既降低变动成本,也降低固定成本,使得制品利润率提高,市场竞争能力增强。

2、培养液成本降低

在很多使用牛血清的细胞培养液中,为牛血清支付的成本远远高于培养液中的细胞培养基等其它成分,因此通过采用低血清细胞培养基,降低牛血清用量,可以降低细胞培养液总成本。

3、纯化成本低,制品安全性提高

牛血清的使用量不仅增加了细胞培养液的成本,更严重的是带来动物来源成分、杂蛋白,以及不安全因素,这些成分越多,纯化的成本越高、生物制品原液损失越大,生物制品的成本越大。因此采用低血清、无血清培养细胞可以有效降低纯化成本何损失,提高生物制品成品率和利润率。

编辑: cq

以下网友留言只代表网友个人观点,不代表网站观点